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The fluid flow and heat transfer induced by the combined effects of the mechanically driven lid and the
buoyancy force within rectangular enclosures were investigated in this work. The fluid filled enclosures
are heated and lid-driven either on the upper or on the lower horizontal wall, thermally isolated on the
right vertical wall, and cooled on the other walls. The basis of the investigation was the numerical solu-
tions of the equations for the conservation of mass, momentum, and energy transport using the finite dif-
ference method. The effects of the flow governing parameters including the Richardson and the Prandtl
numbers, and the length-to-height aspect ratio, respectively, in the range 10~ < Ri < 102,103 < Pr < 10,
and 1 < AR < 4 for a fixed Reynolds number, Re = 100, were studied. The results are presented in the form
of the hydrodynamic and thermal fields, and the profiles for vertical and horizontal components of veloc-
ity, temperature, and the local heat flux. The fluid flow and energy distributions within the enclosures
and heat flux on the heated wall are enhanced by the increase in the Richardson number. While an
increase in the Prandtl number improves the heat flux on the heated wall, an increase in aspect ratio sup-
presses it. The results can be used as base line data in the design of systems in which mixed convection
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heat transfer in rectangular enclosures occurs.
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1. Introduction

The problem of heat transfer by mixed convection has been the
subject of intensive theoretical, numerical, and experimental inves-
tigations in the recent years because of its significant applications in
nature and in many scientific and engineering practices. The analysis
of mixed convective flow in a lid-driven cavity finds applications in
flow and heat transfer in solar ponds and solar collectors, dynamics
of lakes, reservoirs and cooling ponds, cooling of electronic systems,
thermal-hydraulics of nuclear reactors, thermal convection in
micropolar fluids, chemical processing equipment, lubricating
grooves, crystal growing, materials processing such as float glass
production, galvanizing, metal coating and casting, food processing,
and industrial processes where a solid ribbon or a solid material is
heated as it moves through a furnace, among others [1-7]. Results
of extensive two- and three-dimensional numerical computational
studies of the lid-driven flow are available in the literature
[1,3-13], and the consistency between these numerical predictions
and laboratory experiments [14-16] has been explained.

The analysis of heat transfer by mixed convection in lid-driven
cavity is very complex due to the interaction of the shear driven force
and the buoyancy effects. The flow governing dimensionless param-
eter is the Richardson number, Ri, defined as the ratio of the Grashof
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number, Gr, to the square of the Reynolds number, Re, i.e. Ri = Gr/Re>.
The Richardson number is a measure of the relative importance of the
buoyancy-driven natural convection to the lid-driven forced convec-
tion. Depending on the values of the Richardson number, the prob-
lem of the combined shear and buoyancy-driven convection can
be classified into three flow regimes as follows; pure forced convec-
tion for Ri < 1, mixed convection for 0.1 < Ri < 10, and pure natural
convection for Ri > 1[1,4,17]. The characterization of the two limit-
ing flow regimes viz., forced and natural convection is very essential
for the complete understanding of the mechanism of the mixed con-
vection problem from the technical and engineering standpoints.
The two competing convection mechanisms are also determined
by the choice of Reynolds number and Prandtl number [4].

Many investigators have studied mixed convective heat transfer
in different configurations and combinations of thermal boundary
conditions that idealized problems encountered in many practical
engineering and industrial applications. Such configurations can be
idealized by the simple rectangular geometry with regular bound-
ary conditions yielding a well-posed problem. A search of the liter-
ature reveals that the studies of lid-driven cavity can broadly be
classified into two configurations. The effects of dimensionless
parameters including the Reynolds number, Grashof number,
Prandtl number, the cavity orientation and the aspect ratio have
been studied numerically for the flow induced by both shear and
buoyancy in the rectangular cavities.
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Nomenclature

AR length-to-height aspect ratio (= L/H)

(o specific heat capacity of fluid

g acceleration due to gravity

Gr Grashof number (= gf(T,, — T-)L3[v?)

H height of the enclosure

h heat transfer coefficient

k fluid thermal conductivity

L length of the enclosure

M number of horizontal grid lines

n number of iterations

N number of vertical grid lines

Nu average Nusselt number (= Q /kAT = hL/k)
Nuy, local Nusselt number

p pressure

Pr Prandtl number (= v/p)

0 overall heat transfer rate

Ra Rayleigh number (= GrPr = gB(T,, — T)L3 /o)
Re Reynolds number (= U, L/V)

Ri Richardson number (= Gr/Re? = (T, — Tc)L/UZ)
t time

T temperature

u horizontal velocity component

U dimensionless horizontal velocity component
v vertical velocity component

Vv dimensionless vertical velocity component
X horizontal coordinate

X dimensionless horizontal coordinate

y vertical coordinate

Y dimensionless vertical coordinate

Greek alphabet

o fluid thermal diffusivity (o = k/pcp)

B volumetric coefficient of thermal expansion
o residual value

u viscosity

) kinematic viscosity

0 dimensionless temperature ((T — T¢)/(Tyw — T¢))
p density

T dimensionless time

10} vorticity

Q dimensionless vorticity

] stream function

¥ dimensionless stream function

Sub- and superscripts

w condition of moving wall

c condition of ambient medium

The most widely studied configuration appearing in the litera-
ture is the one in which the forced convection is induced by the
uniform motion of a single, or two opposite side walls while the
horizontal walls are thermally insulated [1,4,9-11]. Aydin [1]
investigated the effect of aiding- and opposing buoyancy on the
mixed convection for the case of one single moving vertical wall.
He discovered that the range of Richardson number for opposing
buoyancy case was wider than that of the aiding-buoyancy case,
although he did not present any quantitative information regard-
ing these regimes and heat transfer characteristics. The two verti-
cal walls in the configuration investigated by Oztop and Dagtekin
[7] were set into motion. The results revealed that for Ri<1 the
influence of moving walls on the heat transfer is the same when
they move in opposite direction regardless of which side moves
upwards and is reduced when both move upwards. For the case
of opposing buoyancy and shear forces and for Ri>1, the heat
transfer is somewhat better due to formation of secondary cells
on the walls and a counter rotating cell at the center. Ghasemi
and Aminossadati [11] investigated the unsteady laminar mixed
convection heat transfer in a cavity subjected to heating on a frac-
tion of the left vertical wall while the right vertical wall slides with
either a constant or an oscillating velocity. The results indicate that
the direction and magnitude of the velocity of the sliding wall af-
fect the heat transfer rate.

Aydin and Yang [9] investigated the heat transfer mechanism
on a laminar mixed convection in a shear- and buoyancy-driven
cavity with the fraction of its lower wall heated and cooled from
moving upper wall. They found out that for the ratio of the length
of the heated portion of the lower wall to the entire length of the
enclosure, equals to 0.2, the mixed convection region with compa-
rable shear and buoyancy forces is more effective for the range
0.5 < Ri < 2, which increases with the ratio. Depending on their
relative directions to the direction of inertia-driven flow, the buoy-
ancy forces may aid or oppose the forced flow, causing an increase
or decrease in heat transfer rates.

The other well studied configuration in lid-driven cavity is
the case of a single, or two opposite horizontal walls, sliding

at a constant velocity or oscillatory, while the side walls are
thermally insulated [3,8,12,13,18-21]. From the parametric
investigation carried out by Iwatsu et al. [18] in a square cavity
and, Mohamad and Viskanta [8] in a three-dimensional shallow
cavity with the upper wall at higher temperature than the lower
stationary wall, they discovered that the recirculation flow is
confined to the upper region while the heat transfer in the lower
region is dominated by conduction. Luo and Yang [12] investi-
gated the effect of Grashof and Reynolds numbers on flow stabil-
ity in a flow in which the top and bottom lids of the cavity move
in opposite directions and are at different temperature for an as-
pect ratio of 1.96. Sharif [3] investigated the effects of the incli-
nation of the cavity on the flow and thermal fields in addition to
the effects of Rayleigh and Richardson numbers for an aspect ra-
tio of 10. The average Nusselt number is found to increase
mildly with the cavity inclination for dominating forced convec-
tion case and steeply in dominating natural convection case.
Khanafer et al. [13] investigated the effects of oscillatory motion
of the upper wall. Their obtained results reveal that the Reynolds
and Grashof numbers would either enhance or retard the energy
transport process and drag force behaviour depending on the
conduct of the velocity cycle. Small lid oscillation values are
found to constrain the lid associated motion to a shallow depth
from the sliding lid plane.

A review of the available literature shows that the convective
heat transfer and flow in a rectangular enclosure driven by a
horizontal wall while being cooled from one horizontal and ver-
tical wall, with the other vertical wall thermally isolated have
not been investigated. This configuration finds practical applica-
tions in the cooling of an extruded plate in a hot rolling process.
The fluid flow and the heat transfer patterns within the enclo-
sure dictate the degree of cooling and hence the quality of the
final product. This fact motivates the present study. The purpose
of this work is therefore to present a parametric investigation of
the Richardson and Prandtl numbers, and the aspect ratio on the
flow patterns, energy distribution and heat transfer behaviour
for this configuration.
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2. Problem analysis

The physical system being considered consists of a continuously
moving horizontal plate emerging from a slot at a uniform velocity
U, and at temperature T,, into an otherwise quiescent fluid con-
tained in an enclosure. The horizontal plate divides the rectangular
enclosure into two equal halves. The problem domain is thus ide-
alized to consist of two separate rectangular enclosures with the
plate serving as the upper and lower bound of each equal halve
(see Fig. 1). The enclosures are also bounded by a fixed horizontal
wall on the lower and upper parts of the control domain, a fixed
vertical wall bordering the extrusion die surface on the left and
an adiabatic vertical wall on the right. The temperature, T, of the
upper and lower horizontal walls, and that of the vertical wall bor-
dering the extrusion die surface (i.e. the left vertical wall), is lower
than that of the plate (i.e. T, < T,;). The enclosures are filled with a
quenching medium, the choice of which depends upon the mate-
rial being quenched and the rate of cooling which is above the crit-
ical cooling rate to avoid cracking and distortion of the finished
product. The quenching medium transports heat from the extruded
material to the surrounding. The no-slip boundary conditions are
adopted for velocities, thus the horizontal and vertical velocity
components, are set to zero at the stationary walls, and to the spec-
ified velocity at the moving plate.

The flow of the enclosed fluid is considered to be two-dimen-
sional, steady, incompressible, and laminar. The fluid is assumed
to be Newtonian with all the fluid properties taken as constant ex-
cept for the density variation with temperature for which the
Boussinesq approximation is used. The heat transfer by radiation
and the internal heat generation are assumed negligible. The gov-
erning equations for the system of the enclosed fluid are the
expression for the conservation of mass, momentum, and energy
transports at every point of the system within the limit of the basic
assumptions and the use of appropriate boundary conditions.
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Fig. 1. Schematic representation of the physical model with the boundary
constraints and the coordinate axes.

These equations which can be seen in any classical textbook of
fluid dynamics such as the one from Schlichting and Gersten [22]
are stated for a two-dimensional rectangular domain in Cartesian
coordinates as follows:

The continuity equation:

8u+8vi
ox oy

The momentum equations, respectively, in the x- and y-
directions:

0. 1)

YoyT pox
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where Bg(T — T,) stands for the buoyancy force term which is the
body force per unit volume in the y-direction. The Boussinesq
approximation for density variation with temperature is expressed
as

p=p(1-BT~-Tc)). “4)

The thermal energy transport equation is:

C 8—T+u8—T+vaT =k @JFﬂ (5)
PG “lox2 T ay? )

at " Tox oy

In the above equations, the parameter p denotes the fluid density, ¢,
the specific heat capacity at constant pressure, u the fluid viscosity,
k the thermal conductivity, t the time, T the temperature, u and v are
the fluid velocity components, respectively, in x- and y-directions, p
the pressure, and j3 the volumetric coefficient of thermal expansion.

The Navier-Stokes equations (2) and (3) are reduced into one
elliptic and one parabolic non-dimensional equation by the intro-
duction of the expressions describing the velocity components as
the derivatives of the stream function,

_oy _ oy
4= ay’ V= ©6)
the vorticity equation,
ov ou
A 7
ox oy’ @)
and the dimensionless parameters,
X oyY o ogou oy WU
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where o and i stand for the dimensional vorticity and stream func-
tion, respectively, U,, is the plate velocity and L is the length of the
enclosure.

The results of the analysis are the stream function equation
describing the flow kinematics:

rv oy
Q=——F+— 9
(Zo+2%) o)
and the vorticity transport equation [12,23]
0 9 90 1 (3 I’Q .90

The energy equation (5) is also non-dimensionalized to give
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The principal non-dimensional parameters appearing in the above
equations are the Reynolds number, Re, the Prandtl number, Pr,
and the Richardson number, Ri.

In this work, the problem governing equations (9)-(11) are
solved numerically with the prescribed boundary conditions for
the velocity, stream function, vorticity, and temperature fields in
dimensionless form for the two enclosures A and B (see Fig. 1) as
follows:

ov

U=V=y=0, Q:(a—X>H, 0=0 atX=0,
0% a0
U=V=y=0, Q:<W>X:1, x=0  aX=1,
U
U=1, V=y¥=0, Q‘*<8T/>y0’ 0=1 atY=0.

(12)

The boundary conditions for the lower wall of enclosure A (case
a) are:
ou

U=v="v=0, Q:_<W>Y:717 6=0 aty = -1,

while that for the upper wall of enclosure B (case b) are:

ou

U=V=%¥-=0, Q:—(a—y

) , 0=0 atY=1. (13)
Y=1
The vorticity at the non-slip boundary is obtained by a Taylor
series out from the wall and is independent of the wall orientation.
The heat transfer rate at steady state is estimated by computing
the local Nusselt number on the heated wall:

Nuy = Qeons _ (@> . (14)
Qcond oY Y=0

The average Nusselt number is obtained by integration of the
local Nusselt number over the entire length of the heated wall:

Nﬂ _ QCOUU

7,,/]@
Qeond o oY

3. Numerical solution

dX. (15)

Y=0

The governing equations (9)-(11) together with the boundary
conditions were solved numerically using the method of finite
difference, which reduces the continuum problem to a discrete
problem prescribed by a system of algebraic equations. The vor-
ticity transport and energy equations were solved using the
Alternating Direction Implicit (ADI) method and the stream func-
tion equation was solved by the successive over relaxation
method. The first and second spatial derivatives of the equations
were thereby approximated by the central difference scheme,
while the second order upwind difference scheme was used to
discretize the convective non-linear terms due to its better sta-
bility and convergence of the computation process since the
direction of the flow was considered [24]. The resulting systems
of linear algebraic equations were solved iterative using succes-
sive relaxation method.

At time t = 0, the values for the temperature, the stream func-
tion, the vorticity, and the velocity components at all the interior
grid points were set to zero. The solution algorithm was such that
the temperature distribution was foremost determined by solving
the energy transport equation. This was followed by the computa-
tion of the vorticity and the stream function fields. The wall vortic-
ities were updated from the solution of the stream function
equation, while the velocity components were obtained in the
dimensionless form from Eq. (6). The steady state was determined

by monitoring the convergence of the temperature, stream func-
tion, and the vortex fields using the relative error test

N M 1
S Sia|ol - ol
N M 1 <9
-+
ijz Zi:z ’(pi,j

The parameter @ stands for W, 0, or 2 and n denotes the num-
ber of iterations. The value of § used as stated in different litera-
tures varies between 103 and 102 [25]. A value of equals 10>
was however used in this work because any further reduction in
this value did not yield any change in the results of the computed
fields.

(16)

4. Results and discussion

Foremost the accuracy and the reliability of the code used in
this work were tested by checking the grid refinement sensitivity
of the results generated on the average Nusselt number for various
Richardson number in a square enclosure. The numerical experi-
ments were performed with uniform grid systems of 41 x 41,
61 x 61, 81 x 81, and 101 x 101 and the results are presented in
Table 1. The results indicate that a grid system of 61 x 61 is suffi-
cient for the range of Richardson numbers considered in this study
in agreement with the findings of Ghasemi and Aminossadati [11].
This was thus used for all simulations in the present work as a
compromise between the computation cost, numerical stability,
and good field resolution.

Further verification and validation of the present numerical re-
sults were done by computing the flow and the temperature fields
of on the upper horizontal wall lid-driven square cavity that is
thermally insulated on the vertical walls with the upper horizontal
wall at higher temperature than the lower one. The values of the
minimum and maximum velocity components of the flow field
were presented in Table 2 along side with the results of Iwatsu
et al. [18], Khanafer and Chamkha [27], and Abdelkhalek [26] for
a Grashof number, Gr=100 and Reynolds numbers, Re = 100 and
400. A close agreement can be seen between the present results
and those of others presented. The computed average Nusselt
numbers were also compared in Table 3 with previous results of
Abdelkhalek [26], Khanafer et al. [13], Sharif [3], Khanafer and
Chamkha [27], and Iwatsu et al. [18] for Grashof number,
Gr=100 and various Reynolds numbers. The computed average
Nusselt numbers in this work agree very well with the results from
these previous works.

The steady state results obtained from the solution of transient
equations (9)-(11) subject to the boundary conditions (12) and
(13) are now presented in terms of the streamline and isotherm
patterns, and the profiles of the velocity, temperature and the local
Nusselt number. The results are presented for the two cases con-
sidered viz. (a) heating and driving on the upper horizontal wall
and (b) heating and driving on the lower horizontal wall. The Rey-
nolds number was fixed at Re = 100 for both cases while the values
of others problem governing parameters including the aspect ratio,

Table 1
The effect of grid refinement on average Nusselt number for various Richardson
number.

Ri Grid system

41 x 41 61 x 61 81 x 81 101 x 101
0.01 2.00874 2.02400 2.01321 1.97038
0.1 1.25154 1.25543 1.25271 1.24228
1 1.03116 1.03165 1.03129 1.02996
10 1.00319 1.00324 1.00326 1.00308
100 1.00032 1.00033 1.00032 1.00032
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Table 2

5059

Comparison of the computed values of the minimum and the maximum horizontal and vertical velocities in the cavity with those of the previous works from Abdelkhalek [26],
Khanafer and Chamkha [27], and Iwatsu et al. [18] for Grashof number, Gr = 100 at both Reynolds numbers, Re = 100 and 400.

Re =100 Re = 400

Present Abdelkhalek Khanafer and Chamkha Iwatsu et al. Present Abdelkhalek Khanafer and Chamkha Iwatsu et al.

results [26] [27] [18] results [26] [27] [18]
Upnin  —0.21198 -0.2147 -0.2122 —0.2037 -0.31871 -0.3104 —-0.3099 -0.3197
Upnax 1.0000 1.0000 1.0000 1.0000 1.00003 1.0000 1.0000 1.0000
Vmin ~ —0.251027 —0.2485 —0.2506 —0.2448 —0.441064 —0.4435 —-0.4363 —-0.4459
Vinax 0.177125 0.1703 0.1765 0.1699 0.294505 0.2903 0.2866 0.2955

Table 3

Comparison of the average Nusselt number computed in this work with those of the previous works from Abdelkhalek [26], Khanafer et al. [13], Sharif [3], Khanafer and Chamkha

[27], and Iwatsu et al. [18] at Grashof number, Gr = 100.

Re Present results Abdelkhalek [26] Khanafer et al. [13] Sharif [3] Khanafer and Chamkha [27] Iwatsu et al. [18]
1 1.00033 - - - - -

100 2.03116 1.9850 2.02 - 2.01 1.94

400 4.02462 3.8785 4.01 4.05 3.91 3.84

500 4.52671 - - - - -

1000 6.48423 6.3450 6.42 6.55 6.33 6.33

AR, the Richardson number, Ri and the Prandtl number, Pr were
varied in the range 1 <AR<4, 0.1 <Ri< 10, and 103 < Pr< 10,
respectively.

Figs. 2 and 3 illustrate the hydrodynamic and the thermal fields
for the two cases for pure convection at the Reynolds number,
Re = 100, mixed convection for Ri=1 and 10 at fixed Reynolds
number, Re =100, and natural convection at Gr=103 The flow
fields presented in the form of lines of constant stream function,
consist of one-cell pattern for forced and natural convections for
both cases, while for mixed convection strong two-cell patterns
characterized the field for case (a) and a weak second cell evolved
at a Richardson number, Ri= 10 for case (b). The increase in the
convection vigour corresponds to the increase in the value of the
stream function. The clustered streamlines near the upper wall
for case (a) and lower wall for case (b) both for forced and mixed
convection indicate steep velocity gradients in the vertical direc-
tion in this region. The temperature fields are strongly influenced

-0.003

by the flow fields as can be seen in Fig. 3. The figures reveal that
at the Grashof number, Gr = 103, the temperature field is character-
ized by quasi conduction while the isotherms are strongly dis-
torted for forced and mixed convective flow in both cases in the
regions where the velocity gradients are steepest. The isotherms
are stratified for Ri =10 in case (a).

The influence of the Richardson number on the flow and on the
thermal fields is quantified by presenting the plot of the horizontal
and vertical velocity components, and temperature profiles across
the mid-plane of the cavity as depicted in Figs. 4-6, respectively.
The quantitative values of the vertical and the horizontal velocities
are the measure of the strength of the flow. The profile of the hor-
izontal velocity presented for Richardson number, Ri=0.1 in
Fig. 4(a) compared very well with that of forced convection for
Reynolds number, Re = 100 in the work of Al-Amiri et al. [23] indi-
cating that the flow is characterized by forced convection at this
Richardson number. The figure further shows that the profile for

(i) Re = 100 (i) Ri=1.0

(iii) Ri = 10

(i) Re =100 (i) Ri=1.0

(iii) Ri = 10

(iv) Gr = 10°

Fig. 2. The flow fields for (i) forced convection, Re = 100, (ii) mixed convection, Ri = 1.0, (iii) mixed convection, Ri = 10, and (iv) natural convection, Gr = 10> in the square

enclosures for cases (a) and (b).
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(iii) Ri = 10

(i) Re = 100 (i) Ri=1.0

(iv) Ra = 10°

(iii) Ri = 10

Fig. 3. The temperature fields for (i) forced convection, Re = 100, (ii) mixed convection, Ri = 1.0, (iii) mixed convection, Ri =10, and (iv) natural convection, Gr=10? in the

square enclosures for cases (a) and (b).
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Fig. 4. The effects of the Richardson number, Ri, on the horizontal velocity profiles
across the vertical mid-plane, X = 0.5, for Re = 100 and AR =1 for cases (a) and (b).

Ri = 0.1 has one turning point, implying that the flow field consists
of unicellular pattern. An increase in the Richardson number leads
to dramatic changes in the flow pattern. The profiles for Ri=1, 5,
and 10 have two points of inflection indicating that the flow pat-
tern is characterized by two-cell. The vertical velocity profiles illus-
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Fig. 5. The vertical velocity profiles across the horizontal mid-plane, Y = 0.5, for
Re =100 and AR =1 for cases (a) and (b) for various Richardson number, Ri.

trated in Fig. 4(b) show a point of inflection. The increase in the
Richardson number has small effect on the velocity profiles for this
case, which is to be expected since this configuration presents an
unstable problem. The vertical velocity profiles presented in
Fig. 5 corroborate the flow patterns as a function of Richardson
number and the problem configuration as discussed above. Strong
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Fig. 6. The effects of the Richardson number on the temperature profiles across the
vertical mid-plane, X = 0.5, for Re = 100 and AR =1 for cases (a) and (b).

changes in the velocity profiles only occur in the region close to the
vertical wall for case (b), while it spans the entire enclosure for
case (a).

Fig. 6 illustrates the temperature profiles across the vertical
mid-plane of the cavity for the two cases considered for various
Richardson numbers. The increase in the Richardson number re-
sults in the increase in the effect of the buoyancy force on the con-
vection in the enclosure with the consequent stronger convective
heat transfer over the forced convection case. For case (a) the gra-
dient of the temperature curves in the enclosure decreases with
the increase in the Richardson number due to the evolution of flow
stratification, while converse is the situation for case (b). The
implication is that the convective heat transfer within the enclo-
sure in case (a) for a particular Richardson number is weaker than
that in case (b).

The profiles of local Nusselt number are presented in Figs. 7-9
to illustrate the influence of the Richardson number, the aspect ra-
tio and the Prandtl number on the heat flux into the enclosure
through the heated wall. In all these figures the value of the local
Nusselt number predicted at the left end of the heated horizontal
wall is high due to the presence of discontinuity in the temperature
boundary condition at this edge. The profiles show a monotonic
decrease in the local Nusselt number from the high left end value
to a small value towards the right end. This trend is consistent with
the results of Sharif [3] and Basak et al. [21,28]. Fig. 7 reveals that
the effect of the Richardson number on the heat flux profile is
stronger for case (b) than for case (a). The profiles for Ri=0.1 and
Ri=10 for case (b) form the lower and the upper bound while
the curves for other Richardson number within this range run in
between them. The stronger flow field close to the moving lid in
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Fig. 7. The effects of the Richardson number, Ri, on the local Nusselt number along
the horizontal heated wall for Re = 100 and AR =1 for cases (a) and (b).

case (a) compared with that of case (b) causes heat to be conveyed
faster away from this wall than in case (b) with the consequence of
lower heat flux along the heated wall in case (a) than that at cor-
responding point in case (b). Fig. 8 compares the influence of the
length-to-height aspect ratio of the cavity on the heat flux for a
Richardson number, Ri = 5. The results show that higher heat flux
is predicted for an aspect ratio of unity for the two cases than for
other higher aspect ratios. The curves for the aspect ratios of 3
and 4 for case (a) almost fall on each other implying that further
increase in the aspect ratio may not bring any reduction in the local
heat flux. The heat flux profiles for the aspect ratios higher than
unity for case (b) have two points of inflection due to the flow
fields that are characterized by two symmetric horizontal cells.

The effects of the Prandtl number on the local Nusselt number
profiles for the two cases are similar as illustrated in Fig. 9. For this
figure the Reynolds number is fixed at, Re = 100 and Grashof num-
ber, Gr=103 for a square enclosure, while the Prandtl number is
varied between 103 and 10. The curves for Pr=10"3 and
Pr=10"2 for the two cases fall on each other implying that the
Prandtl number has no effect on the local Nusselt number with
the reduction of the number below unity. This result is corrobo-
rated by the effect of Prandtl number on the average Nusselt num-
ber as reported by Waheed [29]. The overall effect of the increase
in the Prandtl number is the increase in the local heat flux which
is in agreement with the findings of Basak et al. [21] and Moallemi
and Jang [30] on the effect of Prandtl number on the local and the
average Nusselt number. This result is plausible since Prandtl num-
ber is the ratio of the thermal energy convected to the fluid to the
thermal energy conducted within the fluid. If Prandtl number is
small, conduction is important and in such a case, the major source
of conduction could be at the walls of the enclosure.
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Fig. 8. The effects of the aspect ratio, AR, on the local Nusselt number along the
horizontal heated wall for Ri = 5.0 for cases (a) and (b).

5. Conclusions

The results of the problem presented in this work were those of
the numerical investigations of flow and thermal fields, and heat
transfer behaviours by mixed convection in rectangular enclosures
driven by horizontal heated wall with the right vertical wall ther-
mally isolated. The other walls of the enclosures are at the ambient
temperature. Two flow geometries were investigated: (a) flow dri-
ven and heated by the top wall, and (b) flow driven and heated by
the bottom wall. The flow governing equations were solved using
the central finite difference procedure and the results were vali-
dated against published values and found to give very good agree-
ment. The effects of the flow governing parameters on the
characteristics of the flow and thermal fields were analysed. The
new results show that the flows and the thermal fields have strong
dependence on the Richardson number, aspect ratio and the
Prandtl number. An increase in the Richardson and Prandtl num-
ber, respectively, enhance the fluid flow and energy distribution
within the enclosure, and heat flux on the heated wall, while an in-
crease in the aspect ratio suppresses it. The flow pattern and the
heat distribution in the enclosure are also function of the flow
domain. From the heat flux profiles for case (b), it becomes obvious
that a two-cell flow evolves with the increase in the aspect ratio.
Several flow characteristics which may prevail in different prob-
lems, such as boundary layers, eddies of different sizes and charac-
teristics, and flow instabilities have featured in the problem
presented. Consequently more physical insight into various flow
problems can be gained from the results of the work which can
help to optimise and improve the performance of various industrial
processes.
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Fig. 9. The effects of the Prandtl number, Pr, on the local Nusselt number along the
horizontal heated wall for Gr= 10> and AR =1 for cases (a) and (b).
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